Detector ensemble based on false positive mining for pedestrian detection

Yuki SUZUKI, Daisuke DEGUCHI, Yasutomo KAWANISHI, Ichiro IDE, and Hiroshi MURASE, Nagoya University, Japan

Background

- Demand for vision based pedestrian detection
 - Collision avoidance systems, etc.
- Large variations in road environments make pedestrian detection difficult
 - Increase of false positives (FP)

Purpose

- Reduction of false positives caused by various visual structures in road environments

Proposed method (False positive tendency and detector ensemble)

Idea of detector

- Characteristic FPs are observed in each environment
 - Trees, utility poles, traffic signs, etc.
- Ensemble of detectors referring to false positive tendency
 - By clustering FPs commonly observed between environments

Capable to adapt to changes in environment

Training phase

- Baseline detector
- False positive mining
- Computation of correspondences between training images and false positive tendency
- Construction of detectors referring to false positive tendencies (H_a, H_b, H_c...)

Detection phase

- Detector for tendency A
- Detector for tendency B
- Detector for tendency C

Pedestrian detection

- Majority voting of detectors
 - Output a detection window only if voted by more than half of the detectors

Experiments

- Experimental setup
 - Dataset: Daimler Mono Benchmark dataset
 - Detector: HOG + SVM
 - HOG: 6,024 feature dimension
 (Cell size: 6 pixels, Block size: 5 cell)
 - SVM: LIBLINEAR’s default parameters
 - Clustering method: k-means clustering (k=5)
- Result
 - False positives significantly reduced
 - Accuracy increased by 9% when FPPF was 1.0

Example of false positive clusters

FROC curve

Conclusion

- Proposed a pedestrian detection method using a detector ensemble based on false positive mining
- Evaluated the accuracy and the effectiveness of the proposed method using the Daimler dataset

Future work

- Evaluation with a larger dataset
 - Caltech Pedestrian detection dataset, etc.
- Introduction of other training methods
 - Deformable Part Model (DPM), Deep Learning, etc.